Problem 33

In SI units, speeds are measured in meters per second (m / s). But, depending on where you live, you're probably more comfortable of thinking of speeds in terms of either kilometers per hour $(\mathrm{km} / \mathrm{h})$ or miles per hour (mi / h). In this problem, you will see that $1 \mathrm{~m} / \mathrm{s}$ is roughly $4 \mathrm{~km} / \mathrm{h}$ or 2 mi / h, which is handy to use when developing your physical intuition. More precisely, show that (a) $1.0 \mathrm{~m} / \mathrm{s}=3.6 \mathrm{~km} / \mathrm{h}$ and (b) $1.0 \mathrm{~m} / \mathrm{s}=2.2 \mathrm{mi} / \mathrm{h}$.

Solution

Multiply by the appropriate conversion factors to get the desired units.

$$
\begin{aligned}
& 1.0 \frac{\mathrm{~m}}{\mathrm{~s}}=1.0 \frac{\mathrm{mI}}{\mathrm{~s}} \times \frac{1 \mathrm{~km}}{1000 \mathrm{mI}} \times \frac{60 \mathrm{~s}}{1 \mathrm{minh}} \times \frac{60 \mathrm{~min}}{1 \mathrm{~h}}=3.6 \frac{\mathrm{~km}}{\mathrm{~h}} \\
& 1.0 \frac{\mathrm{~m}}{\mathrm{~s}}=1.0 \frac{\mathrm{mI}}{\not \mathrm{~K}} \times \frac{1250 \mathrm{ft}}{381 \mathrm{mI}} \times \frac{1 \mathrm{mi}}{5280 \mathrm{ft}} \times \frac{60 \mathrm{k}}{1 \mathrm{~min}} \times \frac{60 \mathrm{~min}}{1 \mathrm{~h}} \approx 2.2 \frac{\mathrm{mi}}{\mathrm{~h}}
\end{aligned}
$$

